Search results
Results from the WOW.Com Content Network
In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the direction opposite to that of the applied magnetic field. [1] Paramagnetic materials include most chemical elements and some compounds; [2] they have a relative magnetic permeability slightly greater than 1 (i.e., a ...
The difference between the chemical shift of a given nucleus in a diamagnetic vs. a paramagnetic environment is called the hyperfine shift.In solution the isotropic hyperfine chemical shift for nickelocene is −255 ppm, which is the difference between the observed shift (ca. −260 ppm) and the shift observed for a diamagnetic analogue ferrocene (ca. 5 ppm).
With one unpaired electron μ eff values range from 1.8 to 2.5 μ B and with two unpaired electrons the range is 3.18 to 3.3 μ B. Note that low-spin complexes of Fe 2+ and Co 3+ are diamagnetic. Another group of complexes that are diamagnetic are square-planar complexes of d 8 ions such as Ni 2+ and Rh + and Au 3+.
The nuclear quadrupole interaction is present only in nuclei with I>1/2. ENDOR spectra contain information on the type of nuclei in the vicinity of the unpaired electron (NZ and EZ), on the distances between nuclei and on the spin density distribution (HFS) and on the electric field gradient at the nuclei (Q).
In magnetism, Pascals’ constants are numbers used in the evaluation of the magnetic susceptibilities of coordination compounds.The magnetic susceptibility of a compound is the sum of the paramagnetic susceptibility associated with the unpaired electrons and the opposing diamagnetic susceptibility associated with electron pairs. [1]
A simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: [4] If all electrons in the particle are paired, then the substance made of this particle is diamagnetic; If it has unpaired electrons, then the substance is paramagnetic.
magnetic moments due to its unpaired electron spins (paramagnetic contribution), if any; orbital motion of its electrons, which in the ground state is often proportional to the external magnetic field (diamagnetic contribution) the combined magnetic moment of its nuclear spins, which depends on the nuclear spin configuration.
[1] [2] The d electron count is an effective way to understand the geometry and reactivity of transition metal complexes. The formalism has been incorporated into the two major models used to describe coordination complexes; crystal field theory and ligand field theory , which is a more advanced version based on molecular orbital theory . [ 3 ]