enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    With one unpaired electron μ eff values range from 1.8 to 2.5 μ B and with two unpaired electrons the range is 3.18 to 3.3 μ B. Note that low-spin complexes of Fe 2+ and Co 3+ are diamagnetic. Another group of complexes that are diamagnetic are square-planar complexes of d 8 ions such as Ni 2+ and Rh + and Au 3+.

  3. Paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Paramagnetism

    Therefore, a simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: [3] if all electrons in the particle are paired, then the substance made of this particle is diamagnetic; if it has unpaired electrons, then the substance is paramagnetic.

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Another property we can observe by examining molecular orbital diagrams is the magnetic property of diamagnetic or paramagnetic. If all the electrons are paired, there is a slight repulsion and it is classified as diamagnetic. If unpaired electrons are present, it is attracted to a magnetic field, and therefore paramagnetic.

  5. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .

  6. Exchange interaction - Wikipedia

    en.wikipedia.org/wiki/Exchange_interaction

    By contrast, an isolated Ni atom (electron configuration = 3d 8 4s 2) in a cubic crystal field will have two unpaired electrons of the same spin (hence, =) and would thus be expected to have in the localized electron model a total spin magnetic moment of = (but the measured spin-only magnetic moment along one axis, the physical observable, will ...

  7. Crystal field theory - Wikipedia

    en.wikipedia.org/wiki/Crystal_field_theory

    In order for low spin splitting to occur, the energy cost of placing an electron into an already singly occupied orbital must be less than the cost of placing the additional electron into an e g orbital at an energy cost of Δ. As noted above, e g refers to the d z 2 and d x 2-y 2 which are higher in energy than the t 2g in octahedral

  8. Van Vleck paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Van_Vleck_paramagnetism

    The Hamiltonian for an electron in a static homogeneous magnetic field in an atom is usually composed of three terms = + (+) + where is the vacuum permeability, is the Bohr magneton, is the g-factor, is the elementary charge, is the electron mass, is the orbital angular momentum operator, the spin and is the component of the position operator orthogonal to the magnetic field.

  9. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.