Search results
Results from the WOW.Com Content Network
A Euclidean vector is thus an equivalence class of directed segments with the same magnitude (e.g., the length of the line segment (A, B)) and same direction (e.g., the direction from A to B). [14] In physics, Euclidean vectors are used to represent physical quantities that have both magnitude and direction, but are not located at a specific ...
A cylindrical vector is specified by a distance in the xy-plane, an angle, and a distance from the xy-plane (a height). The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane.
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow. A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction to which the arrow points.
By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.