Search results
Results from the WOW.Com Content Network
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
Weak equivalence principle This page was last edited on 27 May 2024, at 02:43 (UTC). Text is available under the Creative Commons Attribution ...
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms.
For example, the category of (reasonable) topological spaces has a structure of a model category where a weak equivalence is a weak homotopy equivalence, a cofibration a certain retract and a fibration a Serre fibration. [20] Another example is the category of non-negatively graded chain complexes over a fixed base ring. [21
An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any of the three.
This is a basic statement because the inert mass and the gravitational mass can both be measured separately, even though it never happens that they are different. It is, as described by Popper, a valid falsifier for Einstein's equivalence principle. [AC]
The weak equivalence principle plays a prominent role in relativity theory and the Eötvös experiment was cited by Albert Einstein in his 1916 paper The Foundation of the General Theory of Relativity. Measurements of the gravitational gradient are important in applied geophysics, such as the location of petroleum deposits.
The equivalence point is marked in red. In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react with an equivalent quantity of each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution.