Search results
Results from the WOW.Com Content Network
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:
The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated ...
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
The 2-regular graphs are the disjoint unions of cycle graphs. [4] More generally, every graph is the disjoint union of connected graphs, its connected components. The cographs are the graphs that can be constructed from single-vertex graphs by a combination of disjoint union and complement operations. [5]
Disjoint-set data structures [9] and partition refinement [10] are two techniques in computer science for efficiently maintaining partitions of a set subject to, respectively, union operations that merge two sets or refinement operations that split one set into two. A disjoint union may mean one of two things.
In this way, the disjoint union construction provides a way of viewing any family of sets indexed by as a set "fibered" over , and conversely, for any set : fibered over , we can view it as the disjoint union of the fibers of . Jacobs has referred to these two perspectives as "display indexing" and "pointwise indexing".
graph union: G 1 ∪ G 2. There are two definitions. In the most common one, the disjoint union of graphs, the union is assumed to be disjoint. Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2).