Search results
Results from the WOW.Com Content Network
The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.
The group Spin(3) is isomorphic to the special unitary group SU(2); it is also diffeomorphic to the unit 3-sphere S 3 and can be understood as the group of unit quaternions (i.e. those with absolute value 1). The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations.
The center of the symmetric group, S n, is trivial for n ≥ 3. The center of the alternating group, A n, is trivial for n ≥ 4. The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}.
The center of the quaternion algebra is the subfield of real quaternions. In fact, it is a part of the definition that the real quaternions belong to the center. Conversely, if q = a + b i + c j + d k belongs to the center, then
Let Γ be a finite subgroup of SO(3), the three-dimensional rotation group.There is a natural homomorphism f of SU(2) onto SO(3) which has kernel {±I}. [4] This double cover can be realised using the adjoint action of SU(2) on the Lie algebra of traceless 2-by-2 skew-adjoint matrices or using the action by conjugation of unit quaternions.
The character table does not in general determine the group up to isomorphism: for example, the quaternion group Q and the dihedral group of 8 elements, D 4, have the same character table. Brauer asked whether the character table, together with the knowledge of how the powers of elements of its conjugacy classes are distributed, determines a ...
In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field.. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms
From this point of view, quaternionic representation of a group G is a group homomorphism φ: G → GL(V, H), the group of invertible quaternion-linear transformations of V. In particular, a quaternionic matrix representation of g assigns a square matrix of quaternions ρ(g) to each element g of G such that ρ(e) is the identity matrix and