Search results
Results from the WOW.Com Content Network
Trivial topology; Cofinite topology; Finer topology; Product topology. Restricted product; Quotient space; Unit interval; Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology ...
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .
The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed. This is a list of topology topics. See also: Topology glossary; List of topologies; List of general topology topics; List of geometric topology topics
By [50] Corollary 5.5, the group is a Lie group and the point space is a manifold. It follows that S {\displaystyle {\mathcal {S}}} is a symmetric space . By means of the Lie theory of symmetric spaces, all symmetric planes with a point set of dimension 2 {\displaystyle 2} or 4 {\displaystyle 4} have been classified.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
Bases are ubiquitous throughout topology. The sets in a base for a topology, which are called basic open sets, are often easier to describe and use than arbitrary open sets. [1] Many important topological definitions such as continuity and convergence can be checked using only basic open sets instead of arbitrary open sets. Some topologies have ...