enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum entanglement - Wikipedia

    en.wikipedia.org/wiki/Quantum_entanglement

    Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.

  3. Heisenberg picture - Wikipedia

    en.wikipedia.org/wiki/Heisenberg_picture

    For the sake of pedagogy, the Heisenberg picture is introduced here from the subsequent, but more familiar, Schrödinger picture. According to Schrödinger's equation, the quantum state at time is , where is the time-evolution operator induced by a Hamiltonian that could depend on time, and is the initial state. refers to time-ordering, ħ is ...

  4. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    v. t. e. The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics ...

  5. Phase-space formulation - Wikipedia

    en.wikipedia.org/wiki/Phase-space_formulation

    The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.

  6. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...

  7. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    e. In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields.

  8. Interpretations of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Interpretations_of_quantum...

    The definition of quantum theorists' terms, such as wave function and matrix mechanics, progressed through many stages.For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space; [3]: 24–33 ...

  9. Wave function collapse - Wikipedia

    en.wikipedia.org/wiki/Wave_function_collapse

    In quantum mechanics, wave function collapse, also called reduction of the state vector, [1] occurs when a wave function —initially in a superposition of several eigenstates —reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation and is the essence of a measurement in quantum ...