Search results
Results from the WOW.Com Content Network
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance. The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point. The second (inverse) method ...
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1. Half of a great circle may be called a great ...
SageMath is designed partially as a free alternative to the general-purpose mathematics products Maple and MATLAB. It can be downloaded or used through a web site. SageMath comprises a variety of other free packages, with a common interface and language. SageMath is developed in Python.
The h-calculus is the calculus of finite differences, which was studied by George Boole and others, and has proven useful in combinatorics and fluid mechanics. In a sense, q -calculus dates back to Leonhard Euler and Carl Gustav Jacobi , but has only recently begun to find usefulness in quantum mechanics , given its intimate connection with ...
The boundary circle of a disk splits the set of roots of p(x) in two parts, hence the name of the method. To a given disk one computes approximate factors following the analytical theory and refines them using Newton's method. To avoid numerical instability one has to demand that all roots are well separated from the boundary circle of the disk.
Visual calculus, invented by Mamikon Mnatsakanian (known as Mamikon), is an approach to solving a variety of integral calculus problems. [1] Many problems that would otherwise seem quite difficult yield to the method with hardly a line of calculation. Mamikon collaborated with Tom Apostol on the 2013 book New Horizons in Geometry describing the ...