Search results
Results from the WOW.Com Content Network
Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing by r 2 in the other equations.
The polynomial P(x) has a rational root (this can be determined using the rational root theorem). The resolvent cubic R 3 (y) has a root of the form α 2, for some non-null rational number α (again, this can be determined using the rational root theorem). The number a 2 2 − 4a 0 is the square of a rational number and a 1 = 0. Indeed:
Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps. Gröbner basis computation can be seen as a multivariate, non-linear generalization of both Euclid's algorithm for computing polynomial greatest common ...
Substituting this in q, one gets a polynomial of degree two in x 1, that is zero for x 1 = r 1. It is thus divisible by x 1 – r 1. The quotient is linear in x 1, and may be solved for expressing x 1 as a quotient of two polynomials of degree at most two in , …,, with integer coefficients:
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
Fermat (named after Pierre de Fermat) is a program developed by Prof. Robert H. Lewis of Fordham University.It is a computer algebra system, in which items being computed can be integers (of arbitrary size), rational numbers, real numbers, complex numbers, modular numbers, finite field elements, multivariable polynomials, rational functions, or polynomials modulo other polynomials.
Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.