enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    More accurately, the general orthogonality principle states the following: Given a closed subspace of estimators within a Hilbert space and an element in , an element ^ achieves minimum MSE among all elements in if and only if ⁡ {(^)} = for all .

  3. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    In the Bayesian approach, such prior information is captured by the prior probability density function of the parameters; and based directly on Bayes theorem, it allows us to make better posterior estimates as more observations become available. Thus unlike non-Bayesian approach where parameters of interest are assumed to be deterministic, but ...

  4. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  5. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    Orthogonality The property that allows individual effects of the k-factors to be estimated independently without (or with minimal) confounding. Also orthogonality provides minimum variance estimates of the model coefficient so that they are uncorrelated. Rotatability The property of rotating points of the design about the center of the factor ...

  6. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    Orthogonality Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal.

  7. Normalizing constant - Wikipedia

    en.wikipedia.org/wiki/Normalizing_constant

    In Bayes' theorem, a normalizing constant is used to ensure that the sum of all possible hypotheses equals 1. Other uses of normalizing constants include making the value of a Legendre polynomial at 1 and in the orthogonality of orthonormal functions. A similar concept has been used in areas other than probability, such as for polynomials.

  8. Optimal experimental design - Wikipedia

    en.wikipedia.org/wiki/Optimal_experimental_design

    The use of a Bayesian design does not force statisticians to use Bayesian methods to analyze the data, however. Indeed, the "Bayesian" label for probability-based experimental-designs is disliked by some researchers. [23] Alternative terminology for "Bayesian" optimality includes "on-average" optimality or "population" optimality.

  9. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.