enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can observe if the LTI system is or is not controllable simply by looking at the pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} .

  3. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  4. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  5. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.

  6. Minimum phase - Wikipedia

    en.wikipedia.org/wiki/Minimum_phase

    The most general causal LTI transfer function can be uniquely factored into a series of an all-pass and a minimum phase system. The system function is then the product of the two parts, and in the time domain the response of the system is the convolution of the two part responses.

  7. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  8. BIBO stability - Wikipedia

    en.wikipedia.org/wiki/BIBO_stability

    For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the Laplace transform includes the imaginary axis.When the system is causal, the ROC is the open region to the right of a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any pole in the system.

  9. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is