Search results
Results from the WOW.Com Content Network
A binomial heap is implemented as a set of binomial trees that satisfy the binomial heap properties: [1] Each binomial tree in a heap obeys the minimum-heap property: the key of a node is greater than or equal to the key of its parent. There can be at most one binomial tree for each order, including zero order.
Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers. The array is divided into 7 partitions ...
In computer science, merge sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort , which means that the relative order of equal elements is the same in the input and output.
Pairing heap; Skew heap; A more complete list with performance comparisons can be found at Heap (data structure) § Comparison of theoretic bounds for variants. In most mergeable heap structures, merging is the fundamental operation on which others are based. Insertion is implemented by merging a new single-element heap with the existing heap.
Vuillemin invented the binomial heap [2] and Cartesian tree data structures. [3] With Ron Rivest, he proved the Aanderaa–Rosenberg conjecture, according to which any deterministic algorithm that tests a nontrivial monotone property of graphs, using queries that test whether pairs of vertices are adjacent, must perform a quadratic number of adjacency queries. [4]
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
"Ordered" means that the elements of the data type have some kind of explicit order to them, where an element can be considered "before" or "after" another element. This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list. For a ...
The other major O(n log n) sorting algorithm is merge sort, but that rarely competes directly with heapsort because it is not in-place. Merge sort's requirement for Ω(n) extra space (roughly half the size of the input) is usually prohibitive except in the situations where merge sort has a clear advantage: When a stable sort is required