Search results
Results from the WOW.Com Content Network
Two-phase power can be derived from a three-phase source using two transformers in a Scott connection: One transformer primary is connected across two phases of the supply. The second transformer is connected to a center-tap of the first transformer, and is wound for 86.6% of the phase-to-phase voltage on the three-phase system.
Velocity distribution is difficult to calculate due to the lack of knowledge of the velocities of each phase at a single point. There are several ways to model multiphase flow, including the Euler-Langrange method, where the fluid phase is treated as a continuum by solving the Navier-Stokes equations .
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...
This relation can be written succinctly in matrix form using the admittance matrix. The nodal admittance matrix Y {\displaystyle Y} is a N × N {\displaystyle N\times N} matrix such that bus voltage and current injection satisfy Ohm's law
In two-phase flows in which the properties of the two phases are vastly different, errors in the computation of the surface tension force at the interface cause Front-Capturing methods such as Volume of Fluid (VOF) and Level-Set method (LS) to develop interfacial spurious currents. To better solve such flows, special treatment is required to ...
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.
The faults may be three-phase short circuit, one-phase grounded, two-phase short circuit, two-phase grounded, one-phase break, two-phase break or complex faults. Results of such an analysis may help determine the following: Magnitude of the fault current; Circuit breaker capacity; Rise in voltage in a single line due to ground fault