Search results
Results from the WOW.Com Content Network
Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols. [1]Carbonyl reduction, the net addition of H 2 across a carbon-oxygen double bond, is an important way to prepare alcohols.
Luche reduction is the selective organic reduction of α,β-unsaturated ketones to allylic alcohols. [ 1 ] [ 2 ] [ 3 ] The active reductant is described as "cerium borohydride", which is generated in situ from NaBH 4 and CeCl 3 (H 2 O) 7 .
Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, [5] is an inorganic compound with the formula Na B H 4 (sometimes written as Na[BH 4]). It is a white crystalline solid, usually encountered as an aqueous basic solution .
For the α,β unsaturated systems 10-12, efficient reduction of the ketone occurs despite the possible side reaction of hydroboration of the C-C unsaturated bond. The CBS reduction has also been shown to tolerate the presence of heteroatoms as in ketone 13 , which is capable of coordinating to the borane.
When an α,β-unsaturated carbonyl is reduced, three products can result: an allyl alcohol from simple carbonyl reduction, a saturated ketone or aldehyde resulting from 1,4‑reduction (also called conjugate reduction), or the saturated alcohol from double reduction. [19]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The selectivity of this reagent is illustrated by its reduction of all three methylcyclohexanones to the less stable methylcyclohexanols in >98% yield. Under certain conditions, L-selectride can selectively reduce enones by conjugate addition of hydride, owing to the greater steric hindrance the bulky hydride reagent experiences at the carbonyl ...
The Narasaka–Prasad reduction, sometimes simply called Narasaka reduction, is a diastereoselective reduction of β-hydroxy ketones to the corresponding syn-dialcohols. The reaction employs a boron chelating agent, such as BBu 2 OMe, and a reducing agent, commonly sodium borohydride. This protocol was first discovered by Narasaka in 1984. [1]