Search results
Results from the WOW.Com Content Network
The square root of x is rational if and only if x is a rational number that can be represented as a ratio of two perfect squares. (See square root of 2 for proofs that this is an irrational number, and quadratic irrational for a proof for all non-square natural numbers.)
The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational ) coefficients.
This application also invokes the integer root theorem, a stronger version of the rational root theorem for the case when () is a monic polynomial with integer coefficients; for such a polynomial, all roots are necessarily integers (which is not, as 2 is not a perfect square) or irrational. The rational root theorem (or integer root theorem ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The square root of 2 was likely the first number proved irrational. [27] The golden ratio is another famous quadratic irrational number. The square roots of all natural numbers that are not perfect squares are irrational and a proof may be found in quadratic irrationals.
The square root of a nonnegative integer n is an algebraic integer, but is irrational unless n is a perfect square. If d is a square-free integer then the extension K = Q ( d ) {\displaystyle K=\mathbb {Q} ({\sqrt {d}}\,)} is a quadratic field of rational numbers.
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.