Search results
Results from the WOW.Com Content Network
In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or / 2 radians [1] corresponding to a quarter turn. [2] If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. [ 3 ]
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
All straight angles are equal. Equals added to equals are equal. Equals subtracted from equals are equal. When two adjacent angles form a straight line, they are supplementary. Therefore, if we assume that the measure of angle A equals x, the measure of angle C would be 180° − x. Similarly, the measure of angle D would be 180° − x.
Step 1 (red): construct a circle with center at P to create points A' and B' on the line AB, which are equidistant from P. Step 2 (green): construct circles centered at A' and B' having equal radius. Let Q and P be the points of intersection of these two circles. Step 3 (blue): connect Q and P to construct the desired perpendicular PQ.
From a merge: This is a redirect from a page that was merged into another page.This redirect was kept in order to preserve the edit history of this page after its content was merged into the content of the target page.
The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.
Angle trisection is the construction, using only a straightedge and a compass, of an angle that is one-third of a given arbitrary angle. This is impossible in the general case. For example, the angle 2 π /5 radians (72° = 360°/5) can be trisected, but the angle of π /3 radians (60°) cannot be trisected. [8]
AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.