enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.

  3. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test , [ 2 ] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier ...

  4. Levene's test - Wikipedia

    en.wikipedia.org/wiki/Levene's_test

    The Brown–Forsythe test uses the median instead of the mean in computing the spread within each group (¯ vs. ~, above).Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good statistical power. [3]

  5. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    Note that for discrete random variables, no discretization procedure is necessary. This method is applicable to stationary streaming data as well as large data sets. For non-stationary streaming data, where the Spearman's rank correlation coefficient may change over time, the same procedure can be applied, but to a moving window of observations.

  6. Wald test - Wikipedia

    en.wikipedia.org/wiki/Wald_test

    There are several reasons to prefer the likelihood ratio test or the Lagrange multiplier to the Wald test: [18] [19] [20] Non-invariance: As argued above, the Wald test is not invariant under reparametrization, while the likelihood ratio tests will give exactly the same answer whether we work with R, log R or any other monotonic transformation ...

  7. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In this example, the ratio of adjacent terms in the blue sequence converges to L=1/2. We choose r = (L+1)/2 = 3/4. Then the blue sequence is dominated by the red sequence r k for all n ≥ 2. The red sequence converges, so the blue sequence does as well. Below is a proof of the validity of the generalized ratio test.

  8. Kuder–Richardson formulas - Wikipedia

    en.wikipedia.org/wiki/Kuder–Richardson_formulas

    Often discussed in tandem with KR-20, is Kuder–Richardson Formula 21 (KR-21). [4] KR-21 is a simplified version of KR-20, which can be used when the difficulty of all items on the test are known to be equal.

  9. F-test of equality of variances - Wikipedia

    en.wikipedia.org/wiki/F-test_of_equality_of...

    In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]