Search results
Results from the WOW.Com Content Network
The Purkinje fibers, named for Jan Evangelista Purkyně, (English: / p ɜːr ˈ k ɪ n dʒ i / pur-KIN-jee; [1] Czech: [ˈpurkɪɲɛ] ⓘ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, [2] just beneath the endocardium in a space called the subendocardium. The Purkinje fibers are specialized ...
They develop in the cerebellar primordium that covers the fourth ventricle and below a fissure-like region called the isthmus of the developing brain. Purkinje cells migrate toward the outer surface of the cerebellar cortex and form the Purkinje cell layer. Purkinje cells are born during the earliest stages of cerebellar neurogenesis.
Each climbing fiber will form synapses with 1-10 Purkinje cells. Early in development, Purkinje cells are innervated by multiple climbing fibers, but as the cerebellum matures, these inputs gradually become eliminated resulting in a single climbing fiber input per Purkinje cell.
Stellate cells are neurons in the central nervous system, named for their star-like shape formed by dendritic processes radiating from the cell body. These cells play significant roles in various brain functions, including inhibition in the cerebellum and excitation in the cortex, and are involved in synaptic plasticity and neurovascular coupling.
Purkinje fibers, located in the heart; The visual Purkinje effect of how human beings do not see color in dim light; Purkinje images, reflections of objects from the surface of the cornea, and from the anterior and posterior surfaces of the lens; Purkinje Incorporated, a company that develops healthcare information technology software and services
Purkyně is best known for his 1837 discovery of Purkinje cells, large neurons with many branching dendrites found in the cerebellum. He is also known for his discovery in 1839 of Purkinje fibres, the fibrous tissue that conducts electrical impulses from the atrioventricular node to all parts of the ventricles of the heart.
The only excitatory neurons present in the cerebellar cortex are granule cells. [10] Plasticity of the synapse between a parallel fiber and a Purkinje cell is believed to be important for motor learning. [11] The function of cerebellar circuits is entirely dependent on processes carried out by the granular layer.
Sensory information relayed from the pons through the mossy fibers to the granule cells is then sent along the parallel fibers to the Purkinje cells for processing. Extensive branching in white matter and synapses to granular cells ensures that input from a single mossy fiber axon will influence processing in a very large number of Purkinje cells.