Search results
Results from the WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
An approach used by the fisher.test function in R is to compute the p-value by summing the probabilities for all tables with probabilities less than or equal to that of the observed table. In the example here, the 2-sided p -value is twice the 1-sided value—but in general these can differ substantially for tables with small counts, unlike the ...
One hindrance to widespread understanding of the test is its use of a variety of different measures. In an effort to simplify the information gained from the Binet–Simon test into a more comprehensible and easier to understand form, German psychologist William Stern created the well known Intelligence Quotient (IQ).
Content validity is different from face validity, which refers not to what the test actually measures, but to what it superficially appears to measure.Face validity assesses whether the test "looks valid" to the examinees who take it, the administrative personnel who decide on its use, and other technically untrained observers.
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.
where n 1 is the sample size for sample 1, and R 1 is the sum of the ranks in sample 1. Note that it doesn't matter which of the two samples is considered sample 1. An equally valid formula for U is = (+) The smaller value of U 1 and U 2 is the one used when consulting significance tables. The sum of the two values is given by
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1]