Search results
Results from the WOW.Com Content Network
In rats, theta wave rhythmicity is easily observed in the hippocampus, but can also be detected in numerous other cortical and subcortical brain structures. Hippocampal theta waves, with a frequency range of 6–10 Hz, appear when a rat is engaged in active motor behavior such as walking or exploratory sniffing, and also during REM sleep. [3]
The hippocampus (pl.: hippocampi; via Latin from Greek ἱππόκαμπος, 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the subiculum are components of the hippocampal formation located in the limbic system.
The finding that theta wave phase precession is also a property of grid cells in the entorhinal cortex demonstrated that the phenomenon exists in other parts of the brain that also mediate information about movement. [11] Theta wave phase precession in the hippocampus also plays a role in some brain functions that are unrelated to spatial location.
It has been proposed that the trisynaptic circuit is responsible for the generation of hippocampal theta waves. These waves are responsible for the synchronization of different brain regions, especially the limbic system. [9] In rats, theta waves range between 3–8 Hz and their amplitudes range from 50 to 100 μV.
There are many kinds, generally written as A-B coupling, meaning the A of a slow wave is coupled with the B of a fast wave. For example, phase–amplitude coupling is where the phase of a slow wave is coupled with the amplitude of a fast wave. [70] The theta-gamma code is a coupling between theta wave and gamma wave in the hippocampal network ...
Young woman asleep over study materials. The relationship between sleep and memory has been studied since at least the early 19th century.Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, [1] is a product of brain plasticity, the structural changes within synapses that create associations between stimuli.
When eating, grooming, drowsy, or sleeping in slow-wave sleep (SWS), there has been observed in hippocampal EEG, the non-rhythmic pattern of large irregular activity,(LIA). LIA has the predominant pattern of large amplitude slow waves that contain some fluctuations of sharp spikes (sharp waves) of 50–100 ms duration.
Theta waves interacts with gamma activity, and - during NREM - this oscillatory theta-gamma produces the relocation of the memory representation, from the hippocampus to the cortex. On the other hand, sleep spindles increase occurs right after or in parallel to the theta augmentation, and is a necessary mechanism for the stabilization, the ...