Search results
Results from the WOW.Com Content Network
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:
By doing the above step, we have found the slope of the line that is tangent to the solution curve at the point (,). Recall that the slope is defined as the change in y {\displaystyle y} divided by the change in t {\displaystyle t} , or Δ y Δ t {\textstyle {\frac {\Delta y}{\Delta t}}} .
A plot of () (left) and its phase line (right). In this case, a and c are both sinks and b is a source. In mathematics , a phase line is a diagram that shows the qualitative behaviour of an autonomous ordinary differential equation in a single variable, d y d x = f ( y ) {\displaystyle {\tfrac {dy}{dx}}=f(y)} .
Open Source (yes/no) Kst: GUI, CLI GPL Yes 2004 2021, v 2.0.x Linux, Windows, Mac fast real-time large-dataset plotting and viewing tool with basic data analysis functionality AIDA: LGPL: Yes 2001: October 2003 / 3.2.1: Open interfaces and formats for particle physics data processing Algebrator: GUI: Proprietary: No 1999: 2009 / 4.2: Linux, Mac ...
[1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE. For the sake of simplicity, we confine our attention to the case of a function of two independent variables x and y for the moment. Consider a quasilinear PDE of the form [3]
The number of parameters in the Duffing equation can be reduced by two through scaling (in accord with the Buckingham π theorem), e.g. the excursion and time can be scaled as: [2] = and = /, assuming is positive (other scalings are possible for different ranges of the parameters, or for different emphasis in the problem studied).
Method of lines - the example, which shows the origin of the name of method. The method of lines (MOL, NMOL, NUMOL [1] [2] [3]) is a technique for solving partial differential equations (PDEs) in which all but one dimension is discretized.