Search results
Results from the WOW.Com Content Network
The Principles and Standards for School Mathematics was developed by the NCTM. The NCTM's stated intent was to improve mathematics education. The contents were based on surveys of existing curriculum materials, curricula and policies from many countries, educational research publications, and government agencies such as the U.S. National Science Foundation. [3]
The general consensus of large-scale studies that compare traditional mathematics with reform mathematics is that students in both curricula learn basic skills to about the same level as measured by traditional standardized tests, but the reform mathematics students do better on tasks requiring conceptual understanding and problem solving. [3]
Reform mathematics de-emphasizes this algorithmic dependence. [6] Instead of leading students to find the exact answers to specific problems, reform educators focus students on the overall process which leads to an answer. Students' occasional errors are deemed less important than their understanding of an overall thought process.
Procedural fluency is often times taught without an emphasis on conceptual and applicable comprehension. This leaves students with a gap between their mathematical understanding and their realistic problem solving skills. The ways in which teachers can best prepare for and promote this type of learning will not be discussed here. [1] [3]
Conceptual questions or conceptual problems in science, technology, engineering, and mathematics (STEM) education are questions that can be answered based only on the knowledge of relevant concepts, rather than performing extensive calculations. They contrast with most homework and exam problems in science and engineering that typically require ...
The largest supporter of reform in the US has been the National Council of Teachers of Mathematics. [4]One aspect of the debate is over how explicitly children must be taught skills based on formulas or algorithms (fixed, step-by-step procedures for solving math problems) versus a more inquiry-based approach in which students are exposed to real-world problems that help them develop fluency in ...
Procedural knowledge (i.e., knowledge-how) is different from descriptive knowledge (i.e., knowledge-that) in that it can be directly applied to a task. [2] [4] For instance, the procedural knowledge one uses to solve problems differs from the declarative knowledge one possesses about problem solving because this knowledge is formed by doing.
Investigations was developed between 1990 and 1998. It was just one of a number of reform mathematics curricula initially funded by a National Science Foundation grant. The goals of the project raised opposition to the curriculum from critics (both parents and mathematics teachers) who objected to the emphasis on conceptual learning instead of instruction in more recognized specific methods ...