Search results
Results from the WOW.Com Content Network
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
If a strictly dominant strategy exists for one player in a game, that player will play that strategy in each of the game's Nash equilibria. If both players have a strictly dominant strategy, the game has only one unique Nash equilibrium, referred to as a "dominant strategy equilibrium".
In game theory and economics, a mechanism is called incentive-compatible (IC) [1]: 415 if every participant can achieve their own best outcome by reporting their true preferences. [ 1 ] : 225 [ 2 ] For example, there is incentive compatibility if high-risk clients are better off in identifying themselves as high-risk to insurance firms , who ...
In applied game theory, the definition of the strategy sets is an important part of the art of making a game simultaneously solvable and meaningful. The game theorist can use knowledge of the overall problem, that is the friction between two or more players, to limit the strategy spaces, and ease the solution.
A social choice rule is dominant strategy incentive compatible, or strategy-proof, if the associated revelation mechanism has the property that honestly reporting the truth is always a dominant strategy for each agent." [2] However, the payments to agents become large, sacrificing budget neutrality to incentive compatibility.
A prototypical paper on game theory in economics begins by presenting a game that is an abstraction of a particular economic situation. One or more solution concepts are chosen, and the author demonstrates which strategy sets in the presented game are equilibria of the appropriate type.
Any game that satisfies the following two conditions constitutes a Deadlock game: (1) e>g>a>c and (2) d>h>b>f. These conditions require that d and D be dominant. (d, D) be of mutual benefit, and that one prefer one's opponent play c rather than d. Like the Prisoner's Dilemma, this game has one unique Nash equilibrium: (d, D).
The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism (such as an electoral system or market). [1] It can be seen as a kind of mirror image to Gibbard's theorem.