enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function , although not strictly a probability distribution, is a limiting form of many continuous probability functions.

  4. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. [2] [3] Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values.

  5. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.

  6. Central tendency - Wikipedia

    en.wikipedia.org/wiki/Central_tendency

    For example, given binary data, say heads or tails, if a data set consists of 2 heads and 1 tails, then the mode is "heads", but the empirical measure is 2/3 heads, 1/3 tails, which minimizes the cross-entropy (total surprisal) from the data set.

  7. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    Its complementary cumulative distribution function is a stretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, it interpolates between the exponential distribution (k = 1) and the Rayleigh distribution (k = 2 and =). [5]

  8. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  9. Unimodality - Wikipedia

    en.wikipedia.org/wiki/Unimodality

    where the median is ν, the mean is μ and ω is the root mean square deviation from the mode. It can be shown for a unimodal distribution that the median ν and the mean μ lie within (3/5) 1/2 ≈ 0.7746 standard deviations of each other. [11] In symbols, | |