Search results
Results from the WOW.Com Content Network
quad 2-input AND gate driver 14 SN74AS1008A: 74ALS1010 3 triple 3-input NAND gate driver 14 SN74ALS1010A: 74AC1010, 74ACT1010 1 16x16-bit multiplier/accumulator three-state 64 74AC1010: 74x1011 3 triple 3-input AND gate driver 14 SN74ALS1011A: 74F1016 16 16-bit Schottky diode R-C bus termination array (20) SN74F1016: 74AC1016, 74ACT1016 1
The following is a list of CMOS 4000-series digital logic integrated circuits.In 1968, the original 4000-series was introduced by RCA.Although more recent parts are considerably faster, the 4000 devices operate over a wide power supply range (3V to 18V recommended range for "B" series) and are well suited to unregulated battery powered applications and interfacing with sensitive analogue ...
The picture represents a typical ECL circuit diagram based on Motorola's MECL. In this schematic, transistor T5′ represents the output transistor of a previous ECL gate that provides a logic signal to input transistor T1 of an OR/NOR gate whose other input is at T2 and has outputs Y and Y.
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
AND-OR-invert (AOI) logic and AOI gates are two-level compound (or complex) logic functions constructed from the combination of one or more AND gates followed by a NOR gate (equivalent to an OR gate through an Inverter gate, which is the "OI" part of "AOI").
There are many offshoots of the original 7432 OR gate, all having the same pinout but different internal architecture, allowing them to operate in different voltage ranges and/or at higher speeds. In addition to the standard 2-input OR gate, 3- and 4-input OR gates are also available. In the CMOS series, these are: 4075: triple 3-input OR gate
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results.
Because it has only one input, it is a unary operation and has the simplest type of truth table. It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up.