enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Megapitaria squalida - Wikipedia

    en.wikipedia.org/wiki/Megapitaria_squalida

    Megapitaria squalida, the chocolate clam, is a species of bivalve mollusc in the family Veneridae. It was first described to science by George Brettingham Sowerby , a British conchologist , in 1835.

  3. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    The following outline is provided as an overview of and topical guide to regression analysis: Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables ( Y ) and one or more independent variables ( X ).

  4. Random effects model - Wikipedia

    en.wikipedia.org/wiki/Random_effects_model

    In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables.It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.

  5. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Much like the standard assumption, MI regression assumes there is one instance in each bag, called the "prime instance", which determines the label for the bag (up to noise). The ideal goal of MI regression would be to find a hyperplane which minimizes the square loss of the prime instances in each bag, but the prime instances are hidden.

  6. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    If the assumptions of OLS regression hold, the solution = (), with =, is an unbiased estimator, and is the minimum-variance linear unbiased estimator, according to the Gauss–Markov theorem. The term λ n I {\displaystyle \lambda nI} therefore leads to a biased solution; however, it also tends to reduce variance.

  7. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In machine learning, a key challenge is enabling models to accurately predict outcomes on unseen data, not just on familiar training data.Regularization is crucial for addressing overfitting—where a model memorizes training data details but can't generalize to new data.

  8. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...

  9. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points , if any, are outliers with respect to the independent variables .