enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mertens function - Wikipedia

    en.wikipedia.org/wiki/Mertens_function

    In number theory, the Mertens function is defined for all positive integers n as = = (), where () is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

  3. Franz Mertens - Wikipedia

    en.wikipedia.org/wiki/Franz_Mertens

    Franz Mertens (20 March 1840 – 5 March 1927) (also known as Franciszek Mertens) was a Polish mathematician. He was born in Schroda in the Grand Duchy of Posen, Kingdom of Prussia (now Środa Wielkopolska, Poland) and died in Vienna, Austria. The Mertens function M(x) is the sum function for the Möbius function, in the theory of arithmetic ...

  4. Mertens conjecture - Wikipedia

    en.wikipedia.org/wiki/Mertens_conjecture

    In mathematics, the Mertens conjecture is the statement that the Mertens function is bounded by . Although now disproven, it had been shown to imply the Riemann hypothesis . It was conjectured by Thomas Joannes Stieltjes , in an 1885 letter to Charles Hermite (reprinted in Stieltjes ( 1905 )), and again in print by Franz Mertens ( 1897 ), and ...

  5. images.huffingtonpost.com

    images.huffingtonpost.com/2012-08-30-3258_001.pdf

    Created Date: 8/30/2012 4:52:52 PM

  6. File:Mertens.svg - Wikipedia

    en.wikipedia.org/wiki/File:Mertens.svg

    Created with gnuplot, with the following markup: . set term svg set out 'mertens.svg' set data style lines unset zeroaxis set xtics border set ytics border set bmargin 5 set lmargin 7 set title "Mertens function" set xlabel "n" 1,0 set ylabel "M(n)" 1, 0 plot "mertens.dat" using 1:2 title "" with lines linewidth 2

  7. Mertens' theorems - Wikipedia

    en.wikipedia.org/wiki/Mertens'_theorems

    Mertens' proof does not appeal to any unproved hypothesis (in 1874), and only to elementary real analysis. It comes 22 years before the first proof of the prime number theorem which, by contrast, relies on a careful analysis of the behavior of the Riemann zeta function as a function of a complex variable. Mertens' proof is in that respect ...

  8. Characterization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Characterization_(mathematics)

    Just as in chemistry, the characteristic property of a material will serve to identify a sample, or in the study of materials, structures and properties will determine characterization, in mathematics there is a continual effort to express properties that will distinguish a desired feature in a theory or system. Characterization is not unique ...

  9. Meissel–Mertens constant - Wikipedia

    en.wikipedia.org/wiki/Meissel–Mertens_constant

    In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel–Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant (after Leopold Kronecker), Hadamard–de la Vallée-Poussin constant (after Jacques ...