Search results
Results from the WOW.Com Content Network
But if G is a directed acyclic graph (DAG), then no negative cycles can be created, and a longest path in G can be found in linear time by applying a linear time algorithm for shortest paths in −G, which is also a directed acyclic graph. [4] For a DAG, the longest path from a source vertex to all other vertices can be obtained by running the ...
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
Grundy number of a directed graph. [3]: GT56 Hamiltonian completion [3]: GT34 Hamiltonian path problem, directed and undirected. [2] [3]: GT37, GT38, GT39 Induced subgraph isomorphism problem; Graph intersection number [3]: GT59 Longest path problem [3]: ND29 Maximum bipartite subgraph or (especially with weighted edges) maximum cut.
A bipartite graph may be oriented from one side of the bipartition to the other. The longest path in this orientation has length one, with only two vertices. Conversely, if a graph is oriented without any three-vertex paths, then every vertex must either be a source (with no incoming edges) or a sink (with no outgoing edges) and the partition of the vertices into sources and sinks shows that ...
A directed acyclic graph is a directed graph that has no cycles. [1] [2] [3] A vertex v of a directed graph is said to be reachable from another vertex u when there exists a path that starts at u and ends at v. As a special case, every vertex is considered to be reachable from itself (by a path with zero edges).
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting
Pointer jumping or path doubling is a design technique for parallel algorithms that operate on pointer structures, such as linked lists and directed graphs. Pointer jumping allows an algorithm to follow paths with a time complexity that is logarithmic with respect to the length of the longest path.
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. Similar notions may be defined for directed graphs, where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices are connected with arrows and the edges traced "tail-to-head").