enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002. [15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti, [16] on bipartite permutation graphs, [17] and on Ptolemaic ...

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Edmonds' algorithm (also known as Chu–Liu/Edmonds' algorithm): find maximum or minimum branchings; Euclidean minimum spanning tree: algorithms for computing the minimum spanning tree of a set of points in the plane; Longest path problem: find a simple path of maximum length in a given graph; Minimum spanning tree. Borůvka's algorithm ...

  5. Lowest common ancestor - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_ancestor

    In a tree data structure where each node points to its parent, the lowest common ancestor can be easily determined by finding the first intersection of the paths from v and w to the root. In general, the computational time required for this algorithm is O(h) where h is the height of the tree (length of longest path from a leaf to the root ...

  6. Tarjan's off-line lowest common ancestors algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_off-line_lowest...

    In computer science, Tarjan's off-line lowest common ancestors algorithm is an algorithm for computing lowest common ancestors for pairs of nodes in a tree, based on the union-find data structure. The lowest common ancestor of two nodes d and e in a rooted tree T is the node g that is an ancestor of both d and e and that has the greatest depth ...

  7. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Two primary problems of pathfinding are (1) to find a path between two nodes in a graph; and (2) the shortest path problem—to find the optimal shortest path. Basic algorithms such as breadth-first and depth-first search address the first problem by exhausting all possibilities; starting from the given node, they iterate over all potential ...

  8. Widest path problem - Wikipedia

    en.wikipedia.org/wiki/Widest_path_problem

    In this graph, the widest path from Maldon to Feering has bandwidth 29, and passes through Clacton, Tiptree, Harwich, and Blaxhall. In graph algorithms, the widest path problem is the problem of finding a path between two designated vertices in a weighted graph, maximizing the weight of the minimum-weight edge in the path.

  9. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    A path in the maximum spanning tree is the widest path in the graph between its two endpoints: among all possible paths, it maximizes the weight of the minimum-weight edge. [21] Maximum spanning trees find applications in parsing algorithms for natural languages [22] and in training algorithms for conditional random fields.