Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
Piezoelectric based generators use thin membranes or cantilever beams made of piezoelectric crystals as a transducer mechanism. When the crystal is put under strain by the kinetic energy of the vibration a small amount of current is produced thanks to the piezoelectric effect. These mechanisms are usually very simple with few moving parts, and ...
Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g 33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured ...
The growth and forming of piezoelectric crystals is a well-developed industry, yielding very uniform and consistent distortion for a given applied potential difference. This, combined with the minute scale of the distortions, gives the piezoelectric motor the ability to make very fine steps. Manufacturers claim precision to the nanometer scale.
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. [1] [2] [3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers.
The total capacitance seen from the crystal looking into the rest of the circuit is called the "load capacitance". When a manufacturer makes a "parallel" crystal, a technician uses a Pierce oscillator with a particular fixed load capacitance (often 18 or 20 pF) while trimming the crystal to oscillate at exactly the frequency written on its package.
The use of thin film piezoelectric materials in electronics began in the early 1960s at Bell Telephone Laboratories/Bell Labs. Earlier piezoelectric crystals were developed and used as resonators in applications like oscillators with frequencies up to 100 MHz. Thinning was applied for increasing the resonance frequency of the crystals.
Quartz is one member of a family of crystals that experience the piezoelectric effect.The piezoelectric effect has found applications in high power sources, sensors, actuators, frequency standards, motors, etc., and the relationship between applied voltage and mechanical deformation is well known; this allows probing an acoustic resonance by electrical means.