Search results
Results from the WOW.Com Content Network
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units , one joule corresponds to one kilogram - square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2 ).
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
The Joule expansion, treated as a thought experiment involving ideal gases, is a useful exercise in classical thermodynamics. It provides a convenient example for calculating changes in thermodynamic quantities, including the resulting increase in entropy of the universe ( entropy production ) that results from this inherently irreversible process.
In particular Joule had experimented on the amount of mechanical work generated by friction needed to raise the temperature of a pound of water by one degree Fahrenheit and found a consistent value of 778.24 foot pound force (4.1550 J·cal −1). Joule contended that motion and heat were mutually interchangeable and that, in every case, a given ...
An example of a mathematical statement is that of Crawford (1963): For a given system we let ΔE kin = large-scale mechanical energy, ΔE pot = large-scale potential energy, and ΔE tot = total energy. The first two quantities are specifiable in terms of appropriate mechanical variables, and by definition
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]
The electrostatic potential energy, U E, of one point charge q at position r in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position r ref [note 1] to that position r. [1] [2]: §25-1
The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property.