Search results
Results from the WOW.Com Content Network
The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure. [ 1 ] The idea of the quotient algebra abstracts into one common notion the quotient structure of quotient rings of ring theory , quotient groups of group theory , the quotient spaces of linear algebra ...
Divide the first term of the dividend by the highest term of the divisor (x 3 ÷ x = x 2). Place the result below the bar. x 3 has been divided leaving no remainder, and can therefore be marked as used by crossing it out. The result x 2 is then multiplied by the second term in the divisor −3 = −3x 2. Determine the partial remainder by ...
Animation showing the use of synthetic division to find the quotient of + + + by . Note that there is no term in x 3 {\displaystyle x^{3}} , so the fourth column from the right contains a zero. In algebra , synthetic division is a method for manually performing Euclidean division of polynomials , with less writing and fewer calculations than ...
(For example, the quotient digit pairs (0, +2) and (1, −2) are equivalent, since 0×4+2 = 1×4−2.) This tolerance allows quotient digits to be selected using only a few most-significant bits of the dividend and divisor, rather than requiring a full-width subtraction. This simplification in turn allows a radix higher than 2 to be used.
The ring Z/6Z is reduced, however Z/4Z is not reduced: the class 2 + 4Z is nilpotent. In general, Z/nZ is reduced if and only if n = 0 or n is square-free. If R is a commutative ring and N is its nilradical, then the quotient ring R/N is reduced.
2.4 Quotient rule for division by a scalar. ... of order k > 0, ... Less general but similar is the Hestenes overdot notation in geometric algebra. [3]
The above properties can be used to calculate the quotient of ideals in a polynomial ring given their generators. For example, if I = (f 1, f 2, f 3) and J = (g 1, g 2) are ideals in k[x 1, ..., x n], then
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring [1] or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. [2] [3] It is a specific example of a quotient, as viewed from the general setting of universal ...