Search results
Results from the WOW.Com Content Network
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
The symmetry group of an n-sided regular polygon is the dihedral group D n (of order 2n): D 2, D 3, D 4, ... It consists of the rotations in C n, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite ...
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [5] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular tetradecagon, m=7, and it can be divided into 21: 3 sets of ...
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [3] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
For any two simple polygons of equal area, the Bolyai–Gerwien theorem asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area. [9] However, if the polygon is simple and cyclic then the sides do determine the area. [10]
A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.
There are 5 subgroup dihedral symmetries: (Dih 10, Dih 5), and (Dih 4, Dih 2, and Dih 1), and 6 cyclic group symmetries: (Z 20, Z 10, Z 5), and (Z 4, Z 2, Z 1). These 10 symmetries can be seen in 16 distinct symmetries on the icosagon, a larger number because the lines of reflections can either pass through vertices or edges.
The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).