Search results
Results from the WOW.Com Content Network
He developed MATLAB's initial linear algebra programming in 1967 with his one-time thesis advisor, George Forsythe. [21] This was followed by Fortran code for linear equations in 1971. [21] Before version 1.0, MATLAB "was not a programming language; it was a simple interactive matrix calculator. There were no programs, no toolboxes, no graphics.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... In linear algebra, a convergent matrix is a matrix ...
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.
In linear algebra, the Hermite normal form is an analogue of reduced echelon form for matrices over the integers Z.Just as reduced echelon form can be used to solve problems about the solution to the linear system Ax=b where x is in R n, the Hermite normal form can solve problems about the solution to the linear system Ax=b where this time x is restricted to have integer coordinates only.
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
In algebra, a multilinear polynomial [1] is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 {\displaystyle 2} or higher; that is, each monomial is a constant times a product of distinct variables.