Search results
Results from the WOW.Com Content Network
The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.
The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...
Pick a vector in the above span that is not in the kernel of A − 4I; for example, y = (1,0,0,0) T. Now, (A − 4I)y = x and (A − 4I)x = 0, so {y, x} is a chain of length two corresponding to the eigenvalue 4. The transition matrix P such that P −1 AP = J is formed by putting these vectors next to each other as follows
In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations .
The block Wiedemann algorithm can be used to calculate the leading invariant factors of the matrix, ie, the largest blocks of the Frobenius normal form.Given and , where is a finite field of size , the probability that the leading < invariant factors of are preserved in = is
Python-based TI-Nspire CAS (Computer Software) Texas Instruments: 2006 2009 5.1.3: 2020 Proprietary: Successor to Derive. Based on Derive's engine used in TI-89/Voyage 200 and TI-Nspire handheld Wolfram Alpha: Wolfram Research: 2009 2013: Pro version: $4.99 / month, Pro version for students: $2.99 / month, ioRegular version: free Proprietary
Magma contains asymptotically fast algorithms for all fundamental dense matrix operations, such as Strassen multiplication. Sparse matrices Magma contains the structured Gaussian elimination and Lanczos algorithms for reducing sparse systems which arise in index calculus methods, while Magma uses Markowitz pivoting for several other sparse ...