Search results
Results from the WOW.Com Content Network
In method 1, a slow pre-computation (such as the Remez algorithm) can be used to obtain an optimal (per application requirements) filter design. Method 2 will work in more general cases, e.g. where the ratio of sample rates is not rational, or two real-time streams must be accommodated, or the sample rates are time-varying.
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
A typical choice of characteristic frequency is the sampling rate that is used to create the digital signal from a continuous one. The normalized quantity, f ′ = f f s , {\displaystyle f'={\tfrac {f}{f_{s}}},} has the unit cycle per sample regardless of whether the original signal is a function of time or distance.
In this example, f s is the sampling rate, and 0.5 cycle/sample × f s is the corresponding Nyquist frequency. The black dot plotted at 0.6 f s represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that ...
The sampling theorem introduces the concept of a sample rate that is sufficient for perfect fidelity for the class of functions that are band-limited to a given bandwidth, such that no actual information is lost in the sampling process. It expresses the sufficient sample rate in terms of the bandwidth for the class of functions.
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.
It is noticeable that the number of sampling points decreases after we apply the time–frequency distribution. When we use the WDF, there might be the cross-term problem (also called interference). On the other hand, using Gabor transform causes an improvement in the clarity and readability of the representation, therefore improving its ...
A lower value of n will also lead to a useful sampling rate. For example, using n = 4, the FM band spectrum fits easily between 1.5 and 2.0 times the sampling rate, for a sampling rate near 56 MHz (multiples of the Nyquist frequency being 28, 56, 84, 112, etc.). See the illustrations at the right.