Search results
Results from the WOW.Com Content Network
The special case of Legendre's formula for = gives the number of trailing zeros in the decimal representation of the factorials. [57] According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of from , and dividing the result by four. [58]
The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [ 1 ] [ 2 ] [ 3 ] The name factorion was coined by the author Clifford A. Pickover .
By Archimedes's calculation, the universe of Aristarchus (roughly 2 light years in diameter), if fully packed with sand, would contain 10 63 grains. If the much larger observable universe of today were filled with sand, it would still only equal 10 95 grains. Another 100,000 observable universes filled with sand would be necessary to make a googol.
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3, but not by 10 4.
Stirling permutations, permutations of the multiset of numbers 1, 1, 2, 2, ..., k, k in which each pair of equal numbers is separated only by larger numbers, where k = n + 1 / 2 . The two copies of k must be adjacent; removing them from the permutation leaves a permutation in which the maximum element is k − 1 , with n positions into ...