enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  4. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    Although individually, the Weyl tensor and Ricci tensor do not in general determine the full curvature tensor, the Riemann curvature tensor can be decomposed into a Weyl part and a Ricci part. This decomposition is known as the Ricci decomposition, and plays an important role in the conformal geometry of Riemannian manifolds.

  5. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    If a complete n-dimensional Riemannian manifold has nonnegative Ricci curvature and a straight line (i.e. a geodesic that minimizes distance on each interval) then it is isometric to a direct product of the real line and a complete (n-1)-dimensional Riemannian manifold that has nonnegative Ricci curvature. Bishop–Gromov inequality.

  6. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    In this work Riemann introduced the notion of a Riemannian metric and the Riemannian curvature tensor for the first time, and began the systematic study of differential geometry in higher dimensions. This intrinsic point of view in terms of the Riemannian metric, denoted by d s 2 {\displaystyle ds^{2}} by Riemann, was the development of an idea ...

  7. Line element - Wikipedia

    en.wikipedia.org/wiki/Line_element

    The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The Riemann curvature tensor measures precisely the extent to which parallel transporting vectors around a small rectangle is not the identity map. [28] The Riemann curvature tensor is 0 at every point if and only if the manifold is locally isometric to Euclidean space. [29] Fix a connection on .

  9. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry: a homogeneous space G/H where G = SO(n + 1, 1) acting on the (n + 2)-dimensional Lorentzian space R n+1,1 and H is the isotropy group of a fixed null ray in the light cone.