Search results
Results from the WOW.Com Content Network
Methylphosphonyl dichloride (DC) or dichloro is an organophosphorus compound. It has commercial application in oligonucleotide synthesis, [1] but is most notable as being a precursor to several chemical weapons agents. It is a white crystalline solid that melts slightly above room temperature. [2]
The SF model has been able to successfully describe the transport of water and salt in RO membranes, showing good agreement with experiments. [ 1 ] [ 4 ] [ 5 ] [ 6 ] The development of the SF model also corrects the misconception that RO water transport is a diffusion -based process.
Methyldichlorophosphine belongs to the group of halophosphines, some of which are used as intermediates in the production of plant protection agents, stabilizers for plastics, and catalysts.
Characterization of transport properties requires fabricating a device and measuring its current-voltage characteristics. Devices for transport studies are typically fabricated by thin film deposition or break junctions. The dominant transport mechanism in a measured device can be determined by differential conductance analysis.
The Monte Carlo method for radiation particle transport has its origins at LANL dates back to 1946. [3] The creators of these methods were Stanislaw Ulam, John von Neumann, Robert Richtmyer, and Nicholas Metropolis. [4] Monte Carlo for radiation transport was conceived by Stanislaw Ulam in 1946 while playing Solitaire while recovering from an ...
TCAM (Transport Chemical Aerosol Model; TCAM): a mathematical modelling method (computer simulation) designed to model certain aspects of the Earth's atmosphere. TCAM is one of several chemical transport models, all of which are concerned with the movement of chemicals in the atmosphere, and are thus used in the study of air pollution.
The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned. It is frequently applied in the field of chemical engineering to calculate phase equilibria.
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.