enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    if the last digit of a number is 4 or 6, its square ends in an odd digit followed by a 6; and; if the last digit of a number is 5, its square ends in 25. In base 12, a square number can end only with square digits (like in base 12, a prime number can end only with prime digits or 1), that is, 0, 1, 4 or 9, as follows:

  3. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In other words, the square of a number is the square of its difference from 100 added to the product of one hundred and the difference of one hundred and the product of two and the difference of one hundred and the number. For example, to square 93: 100(100 − 2(7)) + 7 2 = 100 × 86 + 49 = 8,600 + 49 = 8,649

  5. 6174 - Wikipedia

    en.wikipedia.org/wiki/6174

    All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 ...

  6. 1089 (number) - Wikipedia

    en.wikipedia.org/wiki/1089_(number)

    1089 is widely used in magic tricks because it can be "produced" from any two three-digit numbers. This allows it to be used as the basis for a Magician's Choice.For instance, one variation of the book test starts by having the spectator choose any two suitable numbers and then apply some basic maths to produce a single four-digit number.

  7. Square triangular number - Wikipedia

    en.wikipedia.org/wiki/Square_triangular_number

    All square triangular numbers have the form , where is a convergent to the continued fraction expansion of , the square root of 2. [ 4 ] A. V. Sylwester gave a short proof that there are infinitely many square triangular numbers: If the n {\displaystyle n} th triangular number n ( n + 1 ) 2 {\displaystyle {\tfrac {n(n+1)}{2}}} is square, then ...

  8. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof. [3]

  9. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    One iteration of the middle-square method, showing a 6-digit seed, which is then squared, and the resulting value has its middle 6 digits as the output value (and also as the next seed for the sequence). Directed graph of all 100 2-digit pseudorandom numbers obtained using the middle-square method with n = 2.