enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of + being , for real numbers and ).

  3. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    Hermitian matrices also appear in techniques like singular value decomposition (SVD) and eigenvalue decomposition. In statistics and machine learning, Hermitian matrices are used in covariance matrices, where they represent the relationships between different variables. The positive definiteness of a Hermitian covariance matrix ensures the well ...

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  5. EP matrix - Wikipedia

    en.wikipedia.org/wiki/EP_matrix

    In mathematics, an EP matrix (or range-Hermitian matrix [1] or RPN matrix [2]) is a square matrix A whose range is equal to the range of its conjugate transpose A*. Another equivalent characterization of EP matrices is that the range of A is orthogonal to the nullspace of A. Thus, EP matrices are also known as RPN (Range Perpendicular to ...

  6. Jacobi method for complex Hermitian matrices - Wikipedia

    en.wikipedia.org/wiki/Jacobi_Method_for_Complex...

    A Hermitian matrix, H is defined by the conjugate transpose symmetry property: † = , =, By definition, the complex conjugate of a complex unitary rotation matrix, R is its inverse and also a complex unitary rotation matrix:

  7. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  8. Skew-Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-Hermitian_matrix

    Furthermore, skew-Hermitian matrices are normal. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal. [3] All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary; i.e., on the imaginary axis (the number zero is also considered purely imaginary). [4]

  9. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...