Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric ...
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals. The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be ...
Trigonometric integral. Plot of the hyperbolic sine integral function Shi (z) in the complex plane from −2 − 2i to 2 + 2i. Si (x) (blue) and Ci (x) (green) shown on the same plot. Integral sine in the complex plane, plotted with a variant of domain coloring. Integral cosine in the complex plane.
The integral of the secant function defines the Lambertian function, which is the inverse of the Gudermannian function: lam {\displaystyle \int _ {0}^ {\varphi }\sec t\,dt=\operatorname {lam} \varphi =\operatorname {gd} ^ {-1}\varphi .} These functions are encountered in the theory of map projections: the Mercator projection of a point on the ...
Miscellanea. v. t. e. In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse of a continuous and invertible function , in terms of and an antiderivative of . This formula was published in 1905 by Charles-Ange Laisant. [1]
t. e. In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one.
Trigonometry. The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ (a) = cos (a), meaning that the rate of change of sin (x) at a particular angle x ...