Search results
Results from the WOW.Com Content Network
Contraposition. In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...
Universal generalization / instantiation. Existential generalization / instantiation. In propositional logic, material implication[1][2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- or and ...
v. t. e. In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from ...
Argument from ignorance (from Latin: argumentum ad ignorantiam), also known as appeal to ignorance (in which ignorance represents "a lack of contrary evidence"), is a fallacy in informal logic. The fallacy is committed when one asserts that a proposition is true because it has not yet been proven false or a proposition is false because it has ...
Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge.While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics, and linguistics.
In logic, the logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning ...
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q ", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q, or the ...