Search results
Results from the WOW.Com Content Network
If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
If A and B are sets, then the Cartesian product (or simply product) is defined to be: A × B = {(a,b) | a ∈ A and b ∈ B}. That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B.
In the special case of the category of groups, a product always exists: the underlying set of is the Cartesian product of the underlying sets of the , the group operation is componentwise multiplication, and the (homo)morphism : is the projection sending each tuple to its th coordinate.
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}. It is the set difference of the union and the intersection, (A ∪ B) \ (A ∩ B) or (A \ B) ∪ (B \ A). Cartesian product of A and B, denoted A × B, is the set whose members are all possible ordered pairs (a, b), where a is a member of A and b is a ...
The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B. A binary relation between sets A and B is a subset of A × B. The (a, b) notation may be used for other purposes, most notably as denoting open intervals on the real number line ...