Search results
Results from the WOW.Com Content Network
ggplot2 is an open-source data visualization package for the statistical programming language R.Created by Hadley Wickham in 2005, ggplot2 is an implementation of Leland Wilkinson's Grammar of Graphics—a general scheme for data visualization which breaks up graphs into semantic components such as scales and layers. ggplot2 can serve as a replacement for the base graphics in R and contains a ...
RExcel is an add-on for Microsoft Excel that allows access to the statistics package R from within Excel. It uses the statconnDCOM server and, for certain configurations, the room package. It uses the statconnDCOM server and, for certain configurations, the room package.
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
Box plot of five West Coast cities rainfall data. The box plot above is not entirely clear. It is hard to distinguish the cities that are somewhat similar (average or mean is not statistically different) vs. the ones that are dissimilar (average or mean is statistically different). Now, let's view the same boxplot using the CLD methodology.
In statistical graphics, the functional boxplot is an informative exploratory tool that has been proposed for visualizing functional data. [1] [2] Analogous to the classical boxplot, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.
One way they might be heteroscedastic is if = (an example of a scedastic function), so the variance is proportional to the value of . More generally, if the variance-covariance matrix of disturbance ε i {\displaystyle \varepsilon _{i}} across i {\displaystyle i} has a nonconstant diagonal, the disturbance is heteroscedastic. [ 9 ]
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread.
Mathematical formulas or models (also known as algorithms), may be applied to the data in order to identify relationships among the variables; for example, using correlation or causation.