Search results
Results from the WOW.Com Content Network
Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):
The definition of an hyperbolic space in terms of the Gromov product can be seen as saying that the metric relations between any four points are the same as they would be in a tree, up to the additive constant . More generally the following property shows that any finite subset of an hyperbolic space looks like a finite tree.
A group is said to be acylindrically hyperbolic if it admits a non-elementary acylindrical action on a (not necessarily proper) Gromov-hyperbolic space. This notion includes mapping class groups via their actions on curve complexes. Lattices in higher-rank Lie groups are (still!) not acylindrically hyperbolic.
Once we choose a coordinate chart (one of the "models"), we can always embed it in a Euclidean space of same dimension, but the embedding is clearly not isometric (since the curvature of Euclidean space is 0). The hyperbolic space can be represented by infinitely many different charts; but the embeddings in Euclidean space due to these four ...
For > the hyperbolic structure on a finite volume hyperbolic -manifold is unique by Mostow rigidity and so geometric invariants are in fact topological invariants. One of these geometric invariants used as a topological invariant is the hyperbolic volume of a knot or link complement, which can allow us to distinguish two knots from each other ...
Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...
Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.
In mathematics, hyperbolic complex space is a Hermitian manifold which is the equivalent of the real hyperbolic space in the context of complex manifolds. The complex hyperbolic space is a Kähler manifold , and it is characterised by being the only simply connected Kähler manifold whose holomorphic sectional curvature is constant equal to -1.