enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  3. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is closely related to, and is sometimes taken to include, differential topology, which concerns itself with properties of differentiable manifolds that do not rely on any additional geometric structure (see that article for more discussion on the distinction between the two subjects).

  4. Cartan–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cartan–Hadamard_theorem

    The Cartan–Hadamard theorem in conventional Riemannian geometry asserts that the universal covering space of a connected complete Riemannian manifold of non-positive sectional curvature is diffeomorphic to R n. In fact, for complete manifolds of non-positive curvature, the exponential map based at any point of the manifold is a covering map.

  5. Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Bonnet_theorem

    do Carmo, Manfredo P. (2016). Differential geometry of curves & surfaces (Revised & updated second edition of 1976 original ed.). Mineola, NY: Dover Publications, Inc. ISBN 978-0-486-80699-0. MR 3837152. Zbl 1352.53002. Kobayashi, Shoshichi; Nomizu, Katsumi (1969). Foundations of differential geometry. Volume II. Interscience Tracts in Pure and ...

  6. Mathematical Models (Fischer) - Wikipedia

    en.wikipedia.org/wiki/Mathematical_Models_(Fischer)

    Wire and plaster models illustrating the differential geometry and curvature of curves and surfaces, including surfaces of revolution, Dupin cyclides, helicoids, and minimal surfaces including the Enneper surface, with commentary by M. P. do Carmo, G. Fischer, U. Pinkall, H. and Reckziegel. [1] [3]

  7. Isothermal coordinates - Wikipedia

    en.wikipedia.org/wiki/Isothermal_coordinates

    In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form = (+ +),

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space , the n {\displaystyle n} -sphere , hyperbolic space , and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids , are all examples of ...

  9. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.