enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spike-and-slab regression - Wikipedia

    en.wikipedia.org/wiki/Spike-and-slab_regression

    As a result, we obtain a posterior distribution of γ (variable inclusion in the model), β (regression coefficient values) and the corresponding prediction of y. The model got its name (spike-and-slab) due to the shape of the two prior distributions. The "spike" is the probability of a particular coefficient in the model to be zero.

  3. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    Standardized coefficients shown as a function of proportion of shrinkage. In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.

  4. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  5. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  6. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    3. Now transform this vector back to the scale of the actual covariates, using the selected PCA loadings (the eigenvectors corresponding to the selected principal components) to get the final PCR estimator (with dimension equal to the total number of covariates) for estimating the regression coefficients characterizing the original model.

  7. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  8. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  9. Structural equation modeling - Wikipedia

    en.wikipedia.org/wiki/Structural_equation_modeling

    The model's implications for what the data should look like for a specific set of coefficient values depends on: a) the coefficients' locations in the model (e.g. which variables are connected/disconnected), b) the nature of the connections between the variables (covariances or effects; with effects often assumed to be linear), c) the nature of ...