Search results
Results from the WOW.Com Content Network
Steps 1-2: Divide the points into two subsets. The 2-dimensional algorithm can be broken down into the following steps: [2] Find the points with minimum and maximum x coordinates, as these will always be part of the convex hull. If many points with the same minimum/maximum x exist, use the ones with the minimum/maximum y, respectively.
Bentley's algorithm is now also known to be optimal (in the 2-dimensional case), and is used in computer graphics, among other areas. These two problems are the 1- and 2-dimensional cases of a more general question: given a collection of n d-dimensional rectangular ranges, compute the measure of their union. This general problem is Klee's ...
HackerRank's programming challenges can be solved in a variety of programming languages (including Java, C++, PHP, Python, SQL, and JavaScript) and span multiple computer science domains. [ 2 ] HackerRank categorizes most of their programming challenges into a number of core computer science domains, [ 3 ] including database management ...
A sparse matrix obtained when solving a finite element problem in two dimensions. The non-zero elements are shown in black. The non-zero elements are shown in black. In numerical analysis and scientific computing , a sparse matrix or sparse array is a matrix in which most of the elements are zero. [ 1 ]
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
In the worst-case, we have to scan all nodes of the binary search tree, but since binary heap query is optimum, this is acceptable (a 2- dimensional problem can not be optimum in both dimensions) This algorithm is expected to be faster than a traditional interval tree (augmented tree) for search operations.
Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0? Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time?
Averaging for dynamic time warping is the problem of finding an average sequence for a set of sequences. NLAAF [15] is an exact method to average two sequences using DTW. For more than two sequences, the problem is related to the one of the multiple alignment and requires heuristics.